INORGANIC COMPOUNDS

Acta Cryst. (1998). C54, 699-701

Neodymium Diselenite Selenious Acid Dihydrate: Structure and Conformation of the Se₂O₅ Group

MILUVKA STANCHEVA,^a ROSICA PETROVA^b and JOSEF MACIČEK^b

^aInstitute of Chemical Technologies and Biotechnologies, POB 110, 7200 Razgrad, Bulgaria, and ^bBulgarian Academy of Sciences, Central Laboratory of Mineralogy and Crystallography, Rakovski str. 92, 1000 Sofia, Bulgaria. E-mail: jmacicek@bgcict.acad.bg

(Received 29 January 1997; accepted 15 December 1997)

Abstract

The title compound, $Nd_2(Se_2O_5)_3$. $H_2SeO_3.2H_2O$, is a new rare earth hydrogen selenite. Its crystal structure is built up of polar layers parallel to the *ab* plane. Each layer is formed by edge-sharing NdO₉ polyhedra and bridging diselenite groups. Selenious acid and water molecules occur on only one side of the layer. The other side contains flanking diselenite groups only. A complex network of hydrogen bonds holds the layers together. The configuration of Se₂O₅ is defined and compared with the diselenite moieties of related compounds.

Comment

In the course of a study of the ternary system Nd₂O₃-Se₂O₃-H₂O at 373 K and different concentrations of selenious acid, we established the existence of three crystalline phases by X-ray diffraction. The phase formed above 80% H2SeO3 has lattice parameters (determined on a CAD-4 diffractometer) a =12.933 (2), b = 7.334 (3), c = 10.811 (1) Å and $\beta =$ 91.68 (4)°, and is isostructural with the monoclinic compound PrH₃(SeO₃)₂.(Se₂O₅) (Koskenlinna & Valkonen, 1977a). A compound isostructural with SmH(SeO₃)₂,-2H2O (Koskenlinna et al., 1994) crystallizes at H2SeO3 concentrations below 20%. Its lattice parameters, refined from a powder pattern, are a = 6.718(1), b = 7.096(1)and c = 16.460(2) Å (PDF 46-450; International Centre for Diffraction Data, 1996). In the intermediate concentration area, we established the presence of a previously unknown phase with the chemical composition Nd₂(Se₂O₅)₃.H₂SeO₃.2H₂O. The present paper outlines the crystal structure of this interesting new phase and reviews the geometry of the diselenite group in various compounds.

The new rare earth selenite is built up of polar layers parallel to the *ab* plane (Fig. 1). The inner part of the layer consists of edge-sharing pairs of NdO₉ polyhedra, oriented along the c axis, and bridging diselenite groups. The layer is 'decorated' by selenious acid and water molecules on one side and flanking diselenite groups on the other side. The layers are held together by an extensive network of hydrogen bonds.

Fig. 1. Projection of the structure down the *b* axis showing the layer organization. Nd1 and Nd2 polyhedra are shaded. The SeO₃ pyramids are symbolized by dark O₃-base triangles and numbered Se apices. Hydrogen bonds are drawn as dotted lines.

Each of the two crystallographically non-equivalent Nd atoms has a tricapped trigonal prismatic environment. The Nd1 polyhedron is formed by six O atoms from diselenite groups, one from selenious acid and two from water molecules, and has almost regular geometry, with Nd-O distances varying between 2.417(5) and 2.475 (6) A in the trigonal bases, and between 2.542 (5) and 2.669 (6) A for the capping atoms. The more distorted Nd2 polyhedron is built up of diselenite O atoms only; the corresponding Nd-O distances vary between 2.395 (5) and 2.523 (5) Å, and 2.537 (5) and 2.914 (6) Å, respectively. The common edge of the two polyhedra is formed by atoms O22 and O32. The Nd1...Nd2 distance in the Nd₂O₁₆ bipolyhedron is 4.32(2) Å and the angles O22ⁱⁱ-Nd1-O32ⁱⁱⁱ and O22ⁱⁱ-Nd2-O32ⁱⁱⁱ are 62.2 (2) and 61.5 (2)°, respectively (Table 1).

The pyramidal SeO₃ parts of the diselenite groups have regular geometries, similar to those in YNO3-(Se₂O₅).3H₂O (Valkonen & Ylinen, 1979), PrH₃-(SeO₃)₂.Se₂O₅ (Koskenlinna & Valkonen, 1977a), MnH(SeO₃).Se₂O₅ (Koskenlinna & Valkonen, 1977b) and CdSe₂O₅ (Valkonen, 1994). The distances between Se and the central O atom vary between 1.805(6) and 1.852(5)Å, and are longer than those between Se and the terminal O atoms [1.635 (6)-1.679 (5) Å]. The Se₂O₅ groups of most of the diselenites investigated previously coordinate without use of their central O atom. There are only two previously known compounds, PrH₃(SeO₃)₂.Se₂O₅ and CuSe₂O₅ (Meunier et al., 1976), in which the diselenite groups are pentadentate. In the present neodymium diselenite, two of the diselenite groups, i.e. O2Se1-O-Se2O2 and O2Se3-O-Se4O₂, also act as pentadentate ligands; both play a similar structural role. They form six-membered Nd-(OSe)2-O rings typical for inorganic diselenites. Additional coordination of the common O atom leads to the formation of four-membered Nd-(O)2-Se rings. Similar four-membered rings occur only in the structure of PrH₃(SeO₃)₂(Se₂O₅). The third 'decorating' diselenite group, O₂Se5-O-Se6O₂, is the first example of a tridentate ligand.

Analysis of the Se₂O₅ moiety in several inorganic diselenites shows that it has two rigid fragments: the SeO₃ pyramid and the Se—O—Se angle, of about 121°. The only exception is the structure of CdSe₂O₅, where this angle is 140.3°. The shape of the Se₂O₅ group differs mainly in the torsion angles τ and τ' (defined in Fig. 2). The conformational freedom is illustrated in Table 3 for several compounds. The angles τ and τ' are such that $|\tau| \geq |\tau'|$. The total skewness of the Se₂O₅ group is denoted by $|\tau + \tau'|$. For the first four compounds (Table 3), in which the diselenite groups do not form six-membered rings, the τ sum has values in the range 289.1–340°. For the diselenite groups forming six-membered rings, this value decreases and falls close to zero in CuSe₂O₅ (Meunier et al., 1976), where two such rings are formed.

Fig. 2. Definition of the torsion angles describing the conformation of the diselenite group. T and T' are the midpoints between the terminal O atoms.

Experimental

Light-violet tabular crystals of the title compound were prepared from 2 g of Nd_2O_3 and 50 ml of a 57.5% solution of H_2SeO_3 by tempering in an evacuated glass ampoule at 373 K for a month.

Table 1. Selected geometric parameters (Å, °)				
Nd1-011	2.417 (5)	Se1-013	1.819 (5)	
Nd1-012	2.436 (6)	Se2-021	1.661 (6)	
Nd1-021	2.449 (6)	Se2-022	1.676 (5)	
Nd1-071	2.468 (6)	Se2-013	1.845 (5)	
Nd1-022"	2.474 (5)	Se3-031	1.666 (5)	
Nd1-OW2	2.475 (6)	Se3-032	1.679 (5)	
Nd1-032 ⁱⁱⁱ	2.542 (5)	Se3-033	1.852 (5)	
Nd1-OW1	2.588 (6)	Se4-042	1.655 (6)	
Nd1-013"	2.669 (6)	Se4-041	1.657 (5)	
Nd2-031"	2.395 (5)	Se4-033	1.805 (6)	
Nd2	2.409 (5)	Se5-051	1.659 (6)	
Nd2-051	2.440 (6)	Se5-052	1.675 (5)	
Nd2-041"	2.452 (5)	Se5-053	1.824 (6)	
Nd2-052	2.465 (5)	Se6-062	1.650 (6)	
Nd2-032 ^m	2.523 (5)	Se6-061	1.665 (6)	
Nd2-022"	2.537 (5)	Se6-053	1.824 (6)	
Nd2-061"	2.603 (6)	Se7-071	1.636 (6)	
Nd2-033 ⁱⁱⁱ	2.914 (6)	Sc7-073	1.733 (7)	
Sel-Ol2	1.635 (6)	Se7-072	1.736(7)	
Se1-O11	1.673 (5)			
O12-Se1-O11	103.5 (3)	O51-Se5-O52	105.1 (3)	
O12-Se1-O13	99.7 (3)	O51-Se5-O53	95.4 (3)	
O11-Se1-O13	98.7 (3)	O52-Se5-O53	98.5 (3)	
O21-Se2-O22	103.1 (3)	O62-Se6-O61	105.5 (3)	
O21-Se2-O13	100.9 (3)	O62-Se6-O53	96.7 (3)	
O22-Se2-O13	88.2 (2)	O61-Se6-O53	99.4 (3)	
O31-Se3-O32	100.2 (3)	O71-Se7-O73	96.5 (3)	
O31-Se3-O33	102.0 (3)	O71-Se7-O72	100.7 (3)	
O32-Se3-O33	90.7 (3)	O73-Se7-O72	95.0 (4)	
O42-Se4-O41	104.5 (3)	Se1-013-Se2	121.6 (3)	
O42-Se4-O33	98.9 (3)	Se4-033-Se3	122.7 (3)	
O41-Se4-O33	101.8 (3)	Se5-O53-Se6	120.1 (3)	
Symmetry codes: (i	$(x - \frac{1}{2}, \frac{3}{2} - y)$	z; (ii) $x - \frac{1}{2}, \frac{1}{2} - y, z;$	(iii) $x, 1 + y, z$	

Table 2. Hydrogen-bonding geometry (Å, °)

$D - H \cdot \cdot \cdot A$	D—H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D = H \cdots A$
O72-H72···O61'	0.87	1.84	2.705 (9)	178.7
O73-H73O52"	1.00	1.71	2.703 (8)	177.6
OWI-HW11····O62 ⁱⁱⁱ	0.92	2.04	2.933 (9)	162.3
OWI-HW12···O62 ^{iv}	0.98	1.97	2.928 (8)	165.9
OW2-HW21073*	0.95	2.11	3.031 (10)	160.9
OW2-HW21+++O71*	0.95	2.41	2.999 (9)	119.4
OW2—HW22····O62 ^{iv}	0.95	1.94	2.770 (9)	145.2
Symmetry codes: (i)	-x, -y, -y	$z - \frac{1}{2};$ (ii)	$\frac{1}{2} - x, y - \frac{1}{2}$	$z = \frac{1}{2};$ (iii)

 $\frac{1}{2} - x, \frac{1}{2} + y, z - \frac{1}{2}; (iv) 1 - x, 1 - y, z - \frac{1}{2}; (v) x - \frac{1}{2}, \frac{1}{2} - y, z.$

Crystal data

$Nd_2(Se_2O_5)_3H_2SeO_3.2H_2O$	Mo $K\alpha$ radiation
$M_r = 1167.25$	$\lambda = 0.71069 \text{ Å}$
Orthorhombic	Cell parameters from 22
Pna21	reflections
a = 10.665(5) Å	$\theta = 20.49 - 21.65^{\circ}$
b = 7.219(2) Å	$\mu = 19.722 \text{ mm}^{-1}$
c = 23.662(3) Å	T = 293 (2) K
$V = 1821.8 (10) \text{ Å}^3$	Plate
Z = 4	$0.13 \times 0.13 \times 0.06 \text{ mm}$
$D_x = 4.256 \text{ Mg m}^{-3}$	Violet
D_m not measured	

Data collection

Enraf-Nonius CAD-4
diffractometer4057 reflections with
 $I > 2\sigma(I)$ $\omega - 2\theta$ scans $R_{int} = 0.050$ Absorption correction: $\theta_{max} = 27.91^{\circ}$ Gaussian (ABSORB;
DeTitta, 1985) $h = 0 \rightarrow 14$ $K = -9 \rightarrow 9$ $T_{min} = 0.075$, $T_{max} = 0.255$ $I = -31 \rightarrow 31$

Table 3. Geometric parameters	; of	f various diselenite groups (A	Å,	٥,	J
-------------------------------	------	--------------------------------	----	----	---

	Se—O	Se'—O	SeSe'	Se—O—Se'	au	au'	$ \tau + \tau' $
SeO_2^a	1.786	1.786	3.154	124.0	170.0	170.0	340.0
$CaSe_2O_5^{b}$	1.801	1.857	3.232	124.2	- 164.4	- 152.8	317.2
$Au(ScO_3)_2.(Se_2O_5)^C$	1.823	1.823	3.080	115.3	-144.7	-144.7	289.4
$Se(5/6)_2O_5^d$	1.824 (6)	1.824 (6)	3.160(1)	120.1 (3)	-151.0(3)	-112.0(3)	263.0
$ZnSe_2O_5^{e}$	1.827	1.827	3.191	121.6	-83.1	-83.1	166.2
MnSe ₂ O ₅ ^J	1.830	1.830	3.195	121.6	-83.1	-83.1	166.2
$YNO_3(Se_2O_5).3H_2O^g$	1.844	1.816	3.240	124.5	88.4	73.9	162.1
$Se(1/2)_2O_5^c$	1.819 (5)	1.845 (5)	3.199(1)	121.6 (3)	119.3 (3)	37.1 (4)	156.4
$PrH_3(SeO_3)_2 (Se_2O_5)^h$	1.848	1.834	3.248	123.8	103.8	55.3	159.1
CdSe ₂ O ₅ ^l	1.800	1.800	3.387	140.3	74.4	74.4	148.8
VOSe ₂ O ¹	1.768	1.822	3.104	119.6	145.1	-10.1	135.0
$(NH_4)Se_2O_5^k$	1.814	1.843	3.164	119.7	-136.1	26.8	109.3
PbSe ₂ O ₅ ^l	1.844	1.828	3.130	117.0	-131.4	42.4	89.0
$MnH(SeO_3).(Se_2O_5)^m$	1.803	1.782	3.200	126.4	-71.3	1.4	69.9
$Se(3/4)_2O_5^{C}$	1.852 (5)	1.805 (6)	3.209(1)	122.7 (3)	71.3 (4)	-33.0(3)	38.3
$CuSe_2O_5^n$	1.830	1.830	3.209	122.4	0.5	0.5	1.0

References: (a) Wyckoff (1965); (b) Delage et al. (1982); (c) Jones et al. (1981); (d) this work; (e) Meunier & Bertaud (1974); (f) Koskenlinna et al. (1976); (g) Valkonen & Ylinen (1979); (h) Koskenlinna & Valkonen (1977a); (i) Valkonen (1994); (j) Meunier et al. (1974); (k) Chomnilpan (1980); (l) Koskenlinna & Valkonen (1975); (m) Koskenlinna & Valkonen (1977b); (n) Meunier et al. (1976).

8562 measured reflections4380 independent reflections (includes Friedel pairs) 3 standard reflections frequency: 120 min intensity decay: 0.9%

Refinement	
Refinement on F^2	Extinction correction:
$R[F^2 > 2\sigma(F^2)] = 0.028$	SHELXL97 (Sheldrick,
$wR(F^2) = 0.071$	1997)
S = 0.897	Extinction coefficient:
4380 reflections	0.00373 (13)
263 parameters	Scattering factors from
H atoms constrained	International Tables for
$w = 1/[\sigma^2(F_o^2) + (0.0513P)^2]$	Crystallography (Vol. C)
where $P = (F_o^2 + 2F_c^2)/3$	Absolute structure: Flack
$(\Delta/\sigma)_{\rm max} = 0.001$	(1983)
$\Delta \rho_{\rm max} = 1.05 \ {\rm e} \ {\rm A}^{-3}$	Flack parameter = $0.022(14)$
$\Delta q_{\rm min} = -1.23 {\rm e} {\rm \AA}^{-3}$	

The least-squares refinement with anisotropic displacement parameters for the non-H atoms led to R = 0.035 and wR = 0.045. At this point, the bond-valence sums around the selenite O atoms were calculated using the program *BROWN* (Macíček, 1989; unpublished). The sums of the bond valences around the selenite O72 and O73 atoms were 1.262 and 1.295, respectively, which indicated unambiguously that these atoms were bonded to H atoms. The subsequent difference Fourier calculations supported this finding. Although the water H atoms could not be located, the geometry of the OW environment allowed us to predict the positions of the H atoms. All H atoms were further refined as riding atoms with fixed $U_{iso} = 0.0500 \text{ Å}^2$.

Data collection: *CAD-4 Users Manual* (Enraf-Nonius, 1988). Data reduction: *DATARED* (Vassilev, 1997; unpublished). Program(s) used to solve structure: *SHELXS86* (Sheldrick, 1985). Program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997). Molecular graphics: *ORTEPII* (Johnson, 1976). Software used to prepare material for publication: *KAPPA* (Macíček, 1992; unpublished).

This work has been supported by the Bulgarian Academy of Sciences and the Bulgarian National Science Fund, Project CH-402. Supplementary data for this paper are available from the IUCr electronic archives (Reference: AB1466). Services for accessing these data are described at the back of the journal.

References

Chomnilpan, S. (1980). Acta Cryst. B36, 675-677.

- Delage, Ch., Carpy, A. & Goursolle, M. (1982). Acta Cryst. B38, 1278–1280.
- DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75-79.
- Enraf-Nonius (1988). CAD-4 Users Manual. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- International Centre for Diffraction Data (1996). Powder Diffraction File, Set 46. ICDD, Newtown Square, PA 19073-3273, USA.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Jones, P. G., Schwartzmann, E., Sheldrick, G. M. & Timpe, H. (1981). Z. Naturforsch. Teil B, 35, 1050-1051.
- Koskenlinna, M., Mutikainen, I., Leskelä, M. & Niinistö, L. (1994). Acta Cryst. C50, 1384–1386.
- Koskenlinna, M., Niinistö, L. & Valkonen, J. (1976). Acta Chem. Scand. Ser. A, 30, 836–837.
- Koskenlinna, M. & Valkonen, J. (1977a). Acta Chem. Scand. Ser. A, 31, 457–460.
- Koskenlinna, M. & Valkonen, J. (1977b). Acta Chem. Scand. Ser. A, **31**, 638–640.
- Koskenlinna, M. & Valkonen, J. (1995). Acta Cryst. C51, 1-3.
- Meunier, G. & Bertaud, M. (1974). Acta Cryst. B30, 2840-2843.
- Meunier, G., Bertaud, M. & Galy, J. (1974). Acta Cryst. B30, 2834-2839.
- Meunier, G., Svensson, Ch. & Carpy, A. (1976). Acta Cryst. B32, 2664–2667.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Valkonen, J. (1994). Acta Cryst. C50, 1381-1384.
- Valkonen, J. & Ylinen, P. (1979). Acta Cryst. B35, 2378-2380.
- Wyckoff, R. W. G. (1965). In Crystal Structures, Vol. 1, 2nd ed. New York: Interscience.